F-invariants of Stanley-Reisner rings
نویسندگان
چکیده
In prime characteristic there are important invariants that allow us to measure singularities. For certain cases, it is known they rational numbers. this article, we show property for Stanley-Reisner rings in several cases.
منابع مشابه
Combinatorial Invariance of Stanley-reisner Rings
In this short note we show that Stanley-Reisner rings of simplicial complexes, which have had a ‘dramatic application’ in combinatorics [2, p. 41] possess a rigidity property in the sense that they determine their underlying simplicial complexes. For the readers convenience we recall the notion of a Stanley-Reisner ring (for more information the reader is referred to [1, Ch. 5]). Let V be a fin...
متن کاملBuchsbaum Stanley–reisner Rings with Minimal Multiplicity
In this paper, we study non-Cohen–Macaulay Buchsbaum Stanley– Reisner rings with linear free resolution. In particular, for given integers c, d, q with c ≥ 1, 2 ≤ q ≤ d, we give an upper bound hc,d,q on the dimension of the unique non-vanishing homology H̃q−2(∆; k) of a d-dimensional Buchsbaum ring k[∆] with q-linear resolution and codimension c. Also, we discuss about existence for such Buchsba...
متن کاملHigher Stanley–Reisner rings and toric residues
We give a purely algebraic proof of the hypersurface case of the Toric Residue Mirror Conjecture recently proposed by Batyrev and Materov.
متن کاملBetti numbers of Stanley–Reisner rings with pure resolutions
Let ∆ be simplicial complex and let k[∆] denote the Stanley– Reisner ring corresponding to ∆. Suppose that k[∆] has a pure free resolution. Then we describe the Betti numbers and the Hilbert– Samuel multiplicity of k[∆] in terms of the h–vector of ∆. As an application, we derive a linear equation system and some inequalities for the components of the h–vector of the clique complex of an arbitra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 2021
ISSN: ['1873-1376', '0022-4049']
DOI: https://doi.org/10.1016/j.jpaa.2021.106671